3,491 research outputs found

    P652The cardioprotective effect of exogenous sphingosine-1-phosphate requires the activation of endogenous sphingosine-1-phosphate via the sphingosine kinase 1

    Get PDF
    Purpose: Exogenous administration of sphingosine-1-phosphate (S1P) alone, or as part of high density lipoprotein, protects against myocardial infarction. S1P-induced cardioprotection targets the inhibition of the mitochondrial permeability transition pore via mechanisms that remain unclear. In the cell, the endogenous production of S1P from sphingosine is dependent on the activation of sphingosine kinases (SphK) 1 and 2. These two kinases play a role in cardioprotection against ischemia-reperfusion (IR) injury. Therefore, we hypothesised that the cardioprotective effect of exogenous S1P requires the activation of endogenous S1P via SphK. Methods: Isolated cardiomyocytes from adult wildtype mice were exposed to 2 hours of simulated ischemia (SI) in the presence of S1P (10nM) with/without N,N-dimethylsphingosine (DMS, a SphK1 and 2 inhibitor, 10μM) or SKI (a specific SphK1 inhibitor, 15μM). Cell viability was assessed using trypan blue staining and normalised to the normoxic control. Isolated perfused hearts from adult wildtype mice were exposed to 35 minutes of global ischemia followed by 45 minutes of reperfusion (IR) in the presence of S1P (10nM) with/without SKI (10μM). Infarct size (IS) was assessed using tripheyltetrazolium chloride staining and SphK1 activity using a specific biochemical fluorescence based assay kit. Both parameters were normalised to the IR control. Results: In isolated cardiomyocytes, viability under normoxic conditions was 76±1%. SI reduced viability to 52±1% (p< 0.001 vs. normoxia). Pre-treatment with S1P restored the viability to 75±1% (p<0.001 vs. SI). The beneficial effect of S1P was partially inhibited in the presence of DMS (67±4%) (ns vs. S1P) and totally abrogated with SKI pre-treatment (54±2%). Similarly, pre-treatment with S1P in isolated hearts reduced IS following IR from 50±1% (IR control) to 31±2% (S1P) (p<0.001 vs. control). Pre-treatment with SKI abrogated the cardioprotective effect of S1P (56±8%) (p<0.05 vs. S1P) as well as the S1P-induced increase in SphK1 activity (from S1P: 196±79 arbitrary units (AU) to SKI+S1P: 53±27 AU, p<0.05 vs. S1P). Conclusions: Our data, performed in both isolated cardiomyocytes and isolated hearts subjected to an ischemia/reperfusion insult, strongly suggest that exogenous sphingosine-1-phosphate-induced cardioprotection is dependent on the activation of endogenous sphingosine-1-phosphate via sphingosine kinase

    How to Make Educational Lemonade Out of a Didactic Lemon: The Benefits of Listening to Your Students

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151359/1/ase1861.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151359/2/ase1861_am.pd

    First On-Sky Demonstration of a Scintillation Correction technique using Tomographic Wavefront Sensing

    Get PDF
    Scintillation noise significantly limits high precision ground-based photometry of bright stars. In this paper we present the first ever on-sky demonstration of scintillation correction. The technique uses tomographic wavefront sensing to estimate the spatial-temporal intensity fluctuations induced by high altitude optical turbulence. With an estimate of the altitudes and relative strengths of the turbulent layers above the telescope, the wavefront sensor data from multiple guide stars can be combined to estimate the phase aberrations of the wavefront at each altitude through the use of a tomographic algorithm. This 3D model of the phase aberrations can then be used to estimate the intensity fluctuations across the telescope pupil via Fresnel propagation. The measured photometric data for a given target within the field of view can then be corrected for the effects of scintillation using this estimate in post-processing. A simple proof-of-concept experiment using a wavefront sensor and a stereo-SCIDAR turbulence profiler attached to the 2.5m Isaac Newton Telescope was performed for a range of exposure times using the Orion Trapezium cluster as the reference stars. The results from this on-sky demonstration as well as simulations estimating the expected performance for a full tomographic AO system with laser guide stars are presented. On-sky the scintillation index was reduced on average by a factor of 1.9, with a peak of 3.4. For a full tomographic system we expect to achieve a maximum reduction in the scintillation index by a factor of ∼25

    Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes

    Get PDF
    Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.

    P660Molecular insight in apoM-S1P-induced cardioprotection against ischemia/reperfusion injury

    Get PDF
    Purpose: Apolipoprotein M (apoM) is a plasma lipoprotein that mainly associates with high-density lipoproteins (HDL) and that serves as a carrier of the bioactive lipid Sphingosine-1-Phosphate (S1P). Recent studies indicate that S1P binding to G-protein-coupled receptors, known as S1P-receptors, in the heart activates signalling pathways promoting cardiomyocyte survival, but downstream targets are largely unknown. Here, we investigate the putative role of the apoM-S1P axis in relation to cardioprotection against ischemia/reperfusion (IR) injury. Methods and Results: ApoM transgenic (Apom-Tg) mice, in which plasma S1P is increased by >250%, and wild-type (WT) mice were subjected to 30 min of left coronary artery ligation and 24 hrs reperfusion in vivo. We found a reduction of infarct size in Apom-Tg mice (15±1%) in comparison with WT mice (29±4%, N=8-9, p<0.01). In agreement, neutrophil infiltration into the infarcted area was lower in Apom-Tg mice (14.8±0.2% vs. 25.9±5.1 in WT, N=3, p<0.05). Interestingly, 5 min of S1P treatment at the onset of reperfusion reduced infarct size in response to 30 min of no-flow global ischemia (control: 23±3%, S1P-treated: 11±2%, N=5, p<0.05) in ex vivo Langendorff perfused hearts, suggesting that S1P exerts a direct protective effect on cardiomyocytes. Moreover, the sensitivity to ex vivo IR of Apom-Tg mice was not different from WT mice, further supporting that the cardioprotective effect observed in vivo is due to increased plasmatic S1P in these mice. To obtain further insight into the mechanism underlying S1P-induced cardioprotection, neonatal rat ventricular cardiomyocytes were treated for 5 min with S1P after pre-incubation with PKC kinase inhibitors or with specific antagonists of S1P receptors. We found by Western blot that S1P induced phosphorylation of the gap junction protein Connexin43 (Cx43) on Serine 368 by a PKC-dependent mechanism and that this phosphorylation was mediated by S1P2 and S1P3 but not by S1P1 receptors. Finally, 5 min of S1P treatment reduced gap junctional communication between cardiomyocytes (9±1 cells, N=29) in comparison to control conditions (15±2 cells, N=34, p<0.01), as assessed by dye coupling assay. Conclusion: Increased plasma apoM-S1P in mice protects the heart against IR injury. The molecular mechanism might involve reduced cardiomyocyte death by activation of S1P2 and S1P3 receptors, which leads to PKC-dependent phosphorylation of Cx43 and reduction of cell-to-cell couplin

    Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia

    Get PDF
    BACKGROUND: Most patients with familial primary pulmonary hypertension have defects in the gene for bone morphogenetic protein receptor II (BMPR2), a member of the transforming growth factor beta (TGF-beta) superfamily of receptors. Because patients with hereditary hemorrhagic telangiectasia may have lung disease that is indistinguishable from primary pulmonary hypertension, we investigated the genetic basis of lung disease in these patients. METHODS: We evaluated members of five kindreds plus one individual patient with hereditary hemorrhagic telangiectasia and identified 10 cases of pulmonary hypertension. In the two largest families, we used microsatellite markers to test for linkage to genes encoding TGF-beta-receptor proteins, including endoglin and activin-receptor-like kinase 1 (ALK1), and BMPR2. In subjects with hereditary hemorrhagic telangiectasia and pulmonary hypertension, we also scanned ALK1 and BMPR2 for mutations. RESULTS: We identified suggestive linkage of pulmonary hypertension with hereditary hemorrhagic telangiectasia on chromosome 12q13, a region that includes ALK1. We identified amino acid changes in activin-receptor-like kinase 1 that were inherited in subjects who had a disorder with clinical and histologic features indistinguishable from those of primary pulmonary hypertension. Immunohistochemical analysis in four subjects and one control showed pulmonary vascular endothelial expression of activin-receptor-like kinase 1 in normal and diseased pulmonary arteries. CONCLUSIONS: Pulmonary hypertension in association with hereditary hemorrhagic telangiectasia can involve mutations in ALK1. These mutations are associated with diverse effects, including the vascular dilatation characteristic of hereditary hemorrhagic telangiectasia and the occlusion of small pulmonary arteries that is typical of primary pulmonary hypertension

    History of Inuit Community Exposure to Lead, Cadmium, and Mercury in Sewage Lake Sediments

    Get PDF
    Exposure to lead, cadmium, and mercury is known to be high in many arctic Inuit communities. These metals are emitted from industrial and urban sources, are distributed by long-range atmospheric transport to remote regions, and are found in Inuit country foods. Current community exposure to these metals can be measured in food, but feces and urine are also excellent indicators of total exposure from ingestion and inhalation because a high percentage of each metal is excreted. Bulk domestic sewage or its residue in a waste treatment system is a good substitute measure. Domestic waste treatment systems that accumulate metals in sediment provide an accurate historical record of changes in ingestion or inhalation. We collected sediment cores from an arctic lake used for facultative domestic sewage treatment to identify the history of community exposure to Pb, Cd, and Hg. Cores were dated and fluxes were measured for each metal. A nearby lake was sampled to measure combined background and atmospheric inputs, which were subtracted from sewage lake data. Pb, Cd, and Hg inputs from sewage grew rapidly after the onset of waste disposal in the late 1960s and exceeded the rate of population growth in the contributing community from 1970 to 1990. The daily per-person Pb input in 1990 (720,000 ng/person per day) exceeded the tolerable daily intake level. The Cd input (48,000 ng/person per day) and Hg input (19,000 ng/person per day) were below the respective TDI levels at the time

    Disruption of beta cell acetyl-CoA carboxylase-1 in mice impairs insulin secretion and beta cell mass

    Get PDF
    Aims/hypothesis Pancreatic beta cells secrete insulin to maintain glucose homeostasis, and beta cell failure is a hallmark of type 2 diabetes. Glucose triggers insulin secretion in beta cells via oxidative mitochondrial pathways. However, it also feeds mitochondrial anaplerotic pathways, driving citrate export and cytosolic malonyl-CoA production by the acetyl-CoA carboxylase 1 (ACC1) enzyme. This pathway has been proposed as an alternative glucose-sensing mechanism, supported mainly by in vitro data. Here, we sought to address the role of the beta cell ACC1-coupled pathway in insulin secretion and glucose homeostasis in vivo. Methods Acaca, encoding ACC1 (the principal ACC isoform in islets), was deleted in beta cells of mice using the Cre/loxP system. Acaca floxed mice were crossed with Ins2cre mice (βACC1KO; life-long beta cell gene deletion) or Pdx1creER mice (tmx-βACC1KO; inducible gene deletion in adult beta cells). Beta cell function was assessed using in vivo metabolic physiology and ex vivo islet experiments. Beta cell mass was analysed using histological techniques. Results βACC1KO and tmx-βACC1KO mice were glucose intolerant and had defective insulin secretion in vivo. Isolated islet studies identified impaired insulin secretion from beta cells, independent of changes in the abundance of neutral lipids previously implicated as amplification signals. Pancreatic morphometry unexpectedly revealed reduced beta cell size in βACC1KO mice but not in tmx-βACC1KO mice, with decreased levels of proteins involved in the mechanistic target of rapamycin kinase (mTOR)-dependent protein translation pathway underpinning this effect. Conclusions/interpretation Our study demonstrates that the beta cell ACC1-coupled pathway is critical for insulin secretion in vivo and ex vivo and that it is indispensable for glucose homeostasis. We further reveal a role for ACC1 in controlling beta cell growth prior to adulthood

    Rural to Urban Migration and Changes in Cardiovascular risk Factors in Tanzania: A Prospective Cohort Study.

    Get PDF
    High levels of rural to urban migration are a feature of most African countries. Our aim was to investigate changes, and their determinants, in cardiovascular risk factors on rural to urban migration in Tanzania. Men and women (15 to 59 years) intending to migrate from Morogoro rural region to Dar es Salaam for at least 6 months were identified. Measurements were made at least one week but no more than one month prior to migration, and 1 to 3 monthly after migration. Outcome measures included body mass index, blood pressure, fasting lipids, and self reported physical activity and diet. One hundred and three men, 106 women, mean age 29 years, were recruited and 132 (63.2%) followed to 12 months. All the figures presented here refer to the difference between baseline and 12 months in these 132 individuals. Vigorous physical activity declined (79.4% to 26.5% in men, 37.8% to 15.6% in women, p < 0.001), and weight increased (2.30 kg men, 2.35 kg women, p < 0.001). Intake of red meat increased, but so did the intake of fresh fruit and vegetables. HDL cholesterol increased in men and women (0.24, 0.25 mmoll-1 respectively, p < 0.001); and in men, not women, total cholesterol increased (0.42 mmoll-1, p = 0.01), and triglycerides fell (0.31 mmoll-1, p = 0.034). Blood pressure appeared to fall in both men and women. For example, in men systolic blood pressure fell by 5.4 mmHg, p = 0.007, and in women by 8.6 mmHg, p = 0.001. The lower level of physical activity and increasing weight will increase the risk of diabetes and cardiovascular disease. However, changes in diet were mixed, and may have contributed to mixed changes in lipid profiles and a lack of rise in blood pressure. A better understanding of the changes occurring on rural to urban migration is needed to guide preventive measures
    corecore